

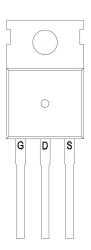
N-Channel Enhanced MOSFET

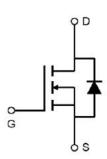
> Features

VDS	VGS	RDSON Typ.	ID
70V	±25V	5.2mR@10V	110A

> Description

This device is N-Channel enhancement MOSFET. Uses advanced trench technology and design to provide excellent RDSON with low gate charge. This device is suitable for use in DC-DC conversion, power switch and charging circuit.


> Applications


- DC/DC converters
- Power supplies
- Motor Drive Control
- Synchronous rectification

> Ordering Information

Device	Package	Shipping	
SSC8070GT4	TO-220-3L	50/Tube	
Minimum Purchase Quantity: 1K/Box			

Pin configuration

Marking

(Y:Product Year/W: Product Week)

➤ Absolute Maximum Ratings(T_A=25°C unless otherwise noted)

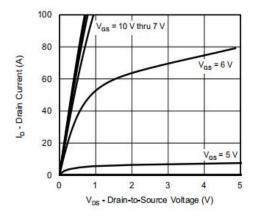
Symbol	Parameter	Ratings	Unit		
V_{DSS}	Drain-to-Source Voltage		70	V	
V _{GSS}	Gate-to-Source Voltage		±25	V	
	Continuous Dusin Commented	T _C =25°C	110		
l _D	Continuous Drain Current d	T _C =100°C	44	Α	
	Outine Duis Out 13	T _A =25°C	42		
I _{DSM}	Continuous Drain Current ^a	T _A =70°C	26	Α	
I _{DM}	Pulsed Drain Current ^b		440	Α	
Б.	D Discipation 6	T _C =25°C	104	10/	
P_D	Power Dissipation ^c	T _C =100°C	41	W	
	Davis Diagination 2	T _A =25°C	15	10/	
P _{DSM}	Power Dissipation ^a	T _A =70°C	10	W	
I _{AS}	Avalanche Current b L=0.5mH Single Pulse		40	Α	
E _{AS}	Avalanche Energy b L=0.5mH Single Pulse		400	mJ	
TJ	Operation junction temperature		-55~150	°C	
T _{STG}	Storage temperature range		-55~150	℃	

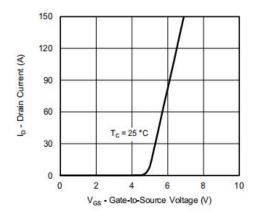
➤ Thermal Resistance Ratings(T_A=25°C unless otherwise noted)

Symbol	Parameter	Ratings	Unit
R _{0JA}	Junction-to-Ambient Thermal Resistance ^a	8	°C () A (
R ₀ JC	Junction-to-Case Thermal Resistance	1.2	°C/W

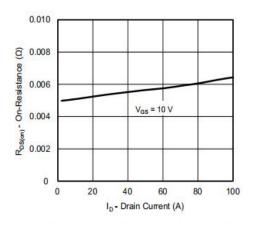
Note:

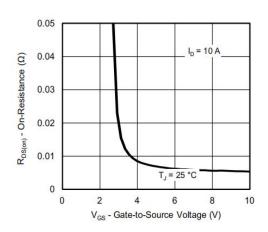
- a. The value of $R_{_{\theta}JA}$ is measured with the device mounted on 1 in² FR-4 board with 2oz.copper, in a still air environment with T_A =25°C. The value in any given application depends on the user is specific board design. The power dissipation is based on the t \leq 10s thermal resistance rating.
- b. Repetitive rating, pulse width limited by junction temperature.
- c. The power dissipation P_D is based on T_{J(MAX)}=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heat sinking is used.
- d. The maximum current rating is package limited.



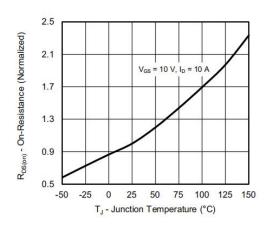

➤ Electronics Characteristics(T_A=25°C unless otherwise noted)

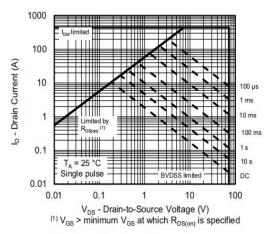
Symbol	Parameter	Test Conditions	Min	Тур.	Max	Unit
V _{(BR)DSS}	Drain-Source Breakdown Voltage	VGS=0V, ID=250uA	70			V
V_{GS} (th)	Gate Threshold Voltage	VDS=VGS, ID=250uA	2	3	4	V
R _{DS(on)}	Drain-Source On-Resistance	VGS=10V, ID=30A		5.2	6.6	mR
I _{DSS}	Zero Gate Voltage Drain Current	VDS=70V, VGS=0V			1	uA
I _{GSS}	Gate-Source leak current	VGS=±25V, VDS=0V			±100	nA
G _{FS}	Transconductance	VDS=20V, ID=10A		33		S
V _{SD}	Forward Voltage	VGS=0V, IS=10A		0.77	1.3	V
Ciss	Input Capacitance	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		4810		
Coss	Output Capacitance	VDS=35V, VGS=0V, f=1MHz		1240		pF
Crss	Reverse Capacitance	2		200		
T _{D(ON)}	Turn-on delay time			19		
Tr	Rise time	VGS=10V, RL=1.75R		23		ns
T _{D(OFF)}	Turn-off delay time	VDS=35V, RG=3R		35		113
Tf	Fall time			15		
Q_{G}	Total Gate Charge	V00-40V VD0-05V		66		
Q _{GS}	Gate Source Charge	VGS=10V, VDS=35V		16		nC
Q_{GD}	Gate Drain Charge	- ID=20A		13		
Trr	Diode Recovery Time	IF=20A, di/dt=200A/us		98		ns
Qrr	Diode Recovery Charge	IF=20A, di/dt=200A/us		166		nC


➤ Typical Characteristics(T_A=25°C unless otherwise noted)



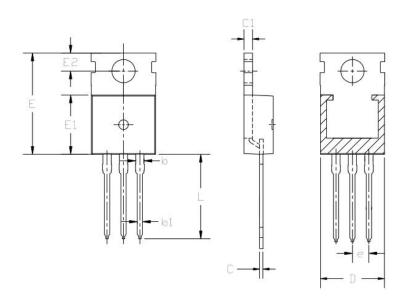
Output Characteristics


Transfer Characteristics

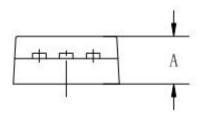


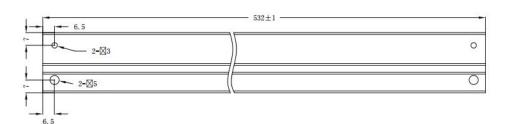
On-Resistance vs. Drain Current and Gate Voltage

On-Resistance vs. Gate-to-Source Voltage

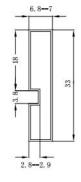


On-Resistance vs. Junction Temperature


Safe Operating Area, Junction-to-Ambient



Package and Tube Information



ovnm or	MILLIMETER			
SYMBOL	MIN	NOM	MAX	
А	4.40		4.60	
b	1.20	050074	1.36	
b1	0.70	22	0.90	
C	0.48		0.53	
C1	1.28		1.32	
D	9.80	10.00	10.20	
E	15.20	15.45	15,75	
E1	9.00	9.20	9.40	
E2	2.60		2.90	
е		2.54		
	13.00	22-1	13.40	

 $T=0.5 \pm 0.1$

Rev.1.0 www.sscsemi.com

DISCLAIMER

AFSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. AFSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.